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Neurodegenerative diseases are characterized by progressive 
degeneration of subsets of neurons and gliosis. Many of these diseases 
are accompanied with intracellular amyloid-like protein pathologies, 
such as tau in Alzheimer’s disease (AD), α-synuclein in dementia with 
Lewy bodies (DLB) and TDP-43 in amyotrophic lateral sclerosis (ALS) 
and frontotemporal dementias (FTLD). Importantly, the distributions and 
spread of these proteins are closely correlated with clinical presentation 
and disease progression. However, little attention had been given to 
the questions of why these diseases are progressive, and why the 
pathologies spread to different brain regions during the course of the 
diseases.

We have been investigating these intracellular abnormal proteins 
in brains of patients, biochemically using LC/MS/MS, immuno-
histochemically with specific antibodies and ultrastructurally. And 
we found that all of these proteins accumulate in brains of patients 
as fibrous or filamentous forms in hyperphosphorylated and partially 
ubiquitinated states.

“Emerging evidence indicates that intracellular amyloid-
like proteins have prion-like properties and propagate 

from cell to cell by converting normal proteins into 
abnormal forms.

We are trying to elucidate the molecular mechanisms of 
this propagation” 
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To investigate the molecular mechanisms of aggregation of these proteins, we established seed-induced 
aggregation models which recapitulate the pathological protein aggregation in in vitro, cultured cells and 
in brains of animals (mouse and marmoset), and proposed a hypothesis, “prion-like propagation of these 
intracellular pathological proteins in brain”. These models are highly useful not only for clarifying the 
molecular mechanisms involved in the pathogenesis and progression of neurodegenerative diseases 
but also for the development of disease modifying drugs and therapy.

I am studying molecular mechanisms of cell-to-cell propagation 
of aggregated proteins (tau, α-synuclein and TDP-43) in 
neurodegenerative diseases. I am also trying to make in vitro and in 
vivo models recapitulating abnormal features found in cells of brains of 
patients using cultured cells and mice. These models will contribute to 
a better understanding of the mechanisms involved in these diseases, 
and also to the development of novel therapeutic strategies.
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Memories mold our personalities to make us who we are: Using 
powerful genetic tools, a number of genes and neural substrates 
underlying memory-associated behaviors have been identified in 
Drosophila. We have investigated when, where and how identified 
memory-associated gene products function to produce memory-based 
behavior, and how the underlying mechanism changes in response to 
changes in physical conditions such as aging.
In addition to behavioral genetic approaches, we employ in vivo and 
ex vivo imaging techniques to characterize physiological properties of 
memory-associated neural networks, and understand how memory-
associated genes and neuromodulatory systems regulate function 
of these networks: how sensory information is associated, and how 
memory information is stored in neural substrates, and later recalled.

Flies perform olfactory conditioning 
behavior, avoiding conditioned odor that 
had been paired with electrical shock (left) 
in the teaching machine (right)

Left, schematic diagram of our in vivo imaging set-up. A living fly is fixed under a microscope 
and can be exposed to both odors and electrical shocks. Neuronal activity can be observed 
during formation, storage, and retrieval of odor-shock associative memories.Right, in our ex 
vivo imaging set-up, we can make artificial memories in cultured brains by stimulating odor 
and shock sensory pathways.

“Combining behavioral genetics and state-of art 
imaging techniques, we aim to understand how our 

brains form, store and retrieve memory.”
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If mushroom body neurons are activated by two inputs, namely odor 
and somatosensory inputs, the activated mushroom body requires 
dopamine release from dopaminergic neurons.

Neural plasticity in the MBs is believed to be a cellular basis of olfactory 
memory. To understand how odor and shock information are associated 
to produce plastic changes in the MB neurons, we developed an 
ex vivo brain imaging system. Using this system, we found that 
simultaneous stimulation of odor and shock input pathways to the MBs 
produces long-term enhancement (LTE) in MB neurons in a manner 
dependent on activity of D1 receptor in the MBs. We further discovered 
a novel mode of dopamine release locally evoked by postsynaptic MB 
neurons which have been coincidentally activated by odor and shock 
input pathways. We have investigated how coincidentally activated MB 
neurons direct dopamine release and whether such on-demand release 
mode also takes place for other neuromodulators and other animals.

Exploring Physiological Systems 
Underlying Learning and Memory

Kohei Ueno

Encoding and decoding memory: In Drosophila, 
formation, storage, and recall of odor memories require 
activity in a brain region known as the mushroom bodies 
(MBs). There are various subsets of MB neurons including 
alpha/beta, alpha prime/beta prime, and gamma neurons. 
Similarly, there are various different phases of memory 
including initial learning, short-term memories, middle-term 
memories, anesthesia resistant memories, and long-term 
memories. Interestingly, different phases of memory require 
activity of different subsets of MB neurons. We are studying 
how anatomical shifting of memory phases occurs and how information is moved between different 
MB subtypes during different phases of memory.

Neuron-glia interactions: Communication between 
neurons and glia are important for memory formation. 
We have identified a cell adhesion molecule, Klingon 
(Klg) that is expressed in both neurons and glia and 
is required for memory-associated communication 
between these cell types. Currently we are studying 
how Klg signaling is required for memory formation, 
stabilization and retrieval. We are also studying how 
Klg signaling is altered upon aging.

Structure of MBs and their lobe
Left: MBs in the fly brain expressing GFP.
Right: Subdivision of MB lobes derived from each 
type of MB neurons. 

Klingon mediates neuron-glia interaction for LTM formation. A, B) Expression of Klingon (Klg) in the fly 
brain. C) Expression of Klg in neurons. D) Expression of Klg in glial cells.
Spaced training increases Klg-mediated neuron-glia interaction, thereby induces Repo-dependent glial 
transcription required for LTM. 

Current Research Topics
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Our research goal is to conceive innovative idea in neuro-rehabilitation 
to restore lost functions after impairment of the central nervous system, 
and to translate our findings into clinical applications capable of 
improving the quality of life for individuals with neural damage.

Regaining the function of an impaired limb 
is necessary for individuals experiencing 
paralysis. Functional loss of limb control 
in individuals with spinal cord injury or 
stroke is often caused by transection of 
descending and ascending pathways 
connecting cortical to spinal networks, 
with neural circuits located above and 
below the impaired site remaining functional.

We are developing a neural interface known as an “artificial neuronal 
connection (ANC)”. The ANC bridges the supra-spinal system with 
the spinal network beyond the lesion site to restore lost function. We 
are conducting clinical trials to assess the effectiveness of ANCs in 
restoring motor function in paralyzed patients. We also investigate 
neural changes that occur during recovery.
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Using large scale multichannel recordings, pharmacological 
interventions, neuroanatomy, viral tools, computation, 
and whole brain imaging, we seek to uncover the neural 
mechanisms underlying voluntary limb movement in intact 
animals, as well as the processes in which motor functions 
are reestablished after neural damage such as spinal cord 
injury and stroke. We are also performing clinical studies to 
test the efficacy of ANCs in human patients.

Emotional states influence how we perform 
motor activities and how we perceive errors. 
Depression impedes, and motivation enhances, 
functional recovery after neuronal damage. 
However, the neuronal substrates underlying 
these psychological effects on functional 
recovery remains unclear. We investigate the 
neuronal substrates underlying psychological 
effects on motor performance in human and 
animal models of neural damage.

Science. 2007, Brain 2009

PLoS ONE 2011, Science. 2015

Neural Mechanisms of Functional Recovery

Psychological Effects on Motor Control
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The number of patients with age-
associated neurodegenerative diseases, 
such as Alzheimer’s disease (AD) and 
Parkinson’s disease (PD), is rapidly 
increasing worldwide. Consequently, huge 
costs for medical treatment and nursing 
care for these patients have become 
a serious socioeconomic dilemma. 
Nonetheless, extensive studies of amyloid 
immunotherapy in AD have been so far 
unsatisfactory. Thus, the development of 
an effective disease-modifying therapy is 
the highest priority in neurodegenerative 
disease research.

Fig. 2   Drosophila molecular genetics

Fig. 1
Effect of adiponectin on 
neurodegeneration in tg mice 

In our laboratory, we seek to exploit a mechanism-based disease-
modifying strategy for α-synucleinopathies, such as PD and dementia 
with Lewy bodies. In this context, we have a particular interest in the 
suppressive effect of adiponectin on neurodegeneration (Fig.1). We are 
also identifying new molecules that could be useful for the prevention 
of neurodegenerative diseases. For this purpose, we currently perform 
Drosophila molecular genetics (Fig.2) in addition to cell biological and 
transgenic mice studies. Our results should be applicable to diseases, 
such as AD and Huntington’s disease.
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